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Abstract

This paper documents a quantitative analysis of the

N performance of the generalized chain codes when used to

quantize sinusoids with specific periods and amplitudes. The

analysis was performed using a software simulation of the

various generalized chain codes using the triangular

quantization scheme. The performance of the coding schemes

was measured in terms of encoding rate and the area error in

the quantization.

Comparisions were made of the performance of the codes as

the amplitude to period ratio was changed. Comparisions were

made when the same codes were used to quantize the same

sinusoids. An attempt was made to quantize a rotated

sinusoid, however the alogrithm implemented was to

inefficient with respect to computer processing time. Finally

the effect of a capture region of 1/2 of the grid size on the

performance of the codes was examined.
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Chapter I

Introduction

The ability to quantize, process, and store two-

dimensional image data is extremely vital to many engineering

and Department of Defense applications. Currently the most

common method of quantizing two-dimensional image data is via

two-dimensional sampling. To obtain high quality

representations of the two-dimensional image a large number of

samples must be taken, which requires a large amount of

computer memory, and lengthy processing time. For many two-

dimensional images two-dimensional sampling is extremely

inefficient.

A class of two-dimensional images for which two-

dimensional sampling is extremely inefficient is line

drawings. A line drawing is a two-dimensional image

consisting totally of thin lines drawn on a contrasting

background (Ref 1:237). The line drawings may then be

classified as "regular" if they are composed of well defined

geometric figures with relatively few arcs and straight lines

such as alphanumeric text or engineering drawings (Ref 12:1).

The line drawings are classified as "free-form" if it

represents terrain contours, geographical maps, or other

natural-object boundaries (Ref 12:1). Using the current

techniques of two-dimensional sampling, in terms of computer

data a geographical map will typically contain 10-40 megabytes

4°
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of data (Ref 18:619). The data generated by the two-

dimensional sampling contains a lot of redundant data and a

need for more efficient means of quantizing and encoding was

realized.

A family of quantization and encoding schemes has been

developed which yields a more efficient method of quantizing

and processing two-dimensional line drawings. This family of

schemes is commonly referred to as the generalized chain

- codes. Presently there does not exist a specific method of

analyzing the performance of the generalized chain codes in a

quantitative manner as all current measures are primarily

qualitative in nature.

The objective of this thesis was to continue the effort

begun by Castor and Neuhoff and continued by Jones in

developing a quantitative comparision of the performance of

various forms of the generalized chain codes when used to

quantize certain periodic waveforms (Refs 1,10,19). This

thesis explored the performance of the various chain codes in

quantizing sine waves possesing different spectral

characteristics and the effect of quantizing in terms of the

first grid intersect with in one half of a grid size of the

ring versus the first grid intersect on the ring.

Additionally work was begun on the problem of quantizing sine

waves rotated at some positive angle above the X axis. The

performance measures being used for the analysis are code rate

and accuracy of the of the various codes when they are used

1-2
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to quantize the various line drawings. The accuracy

performance measure is obtained by determining the total area

lying between the original line drawing and its digitized

approximation and normalizing the total area per unit length

of the orginal line drawing. The code rate performance

measure is obtained by determining the number of bits required

to encode a specific line drawing and normalizing the number

of bits required per unit length of the original line drawing.

The assumptions made in this thesis are the following:

1. The line drawings will not cross over themselves.

2. The grid is located in the right half of a plane of a
cartesian coordinate system such that the vertical grid
lines are parallel to the Y-axis.

3. The line drawing can be defined by a function which is
at least piece-wise continuous and invertible, and

whose domain extends from zero tc some finite positive
number. (Note: The function does not have to be
invertible in the strict mathematical sense, but its
inverse must be implementable in the software.)

4. The grid size of the quantizing gird is small enough
such that the derivative of the function defining the
line drawing has at most one zero between any two
vertical grid lines.

These assumptions are made to limit the scope of this thesis

and to aid in the synthesis of the line drawings. The defining

of the line drawings by some function will aid in the

collection of data since line drawings with the same specific

characteristics can be synthesized repeatedly for quantization

by the different quantization schemes. Additionally by

defining the line drawing by some function the error

1-3
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statistics will be easier to evaluate since the statistics for

the original line drawing will remain the same for each

generation of the line and only the measurements of the

quantized line will change.

The method of presenting the material in this thesis

closely parallels the approach to the problem. Chapter II is

a review of the current literature pertaining to the subject

and presents the background material necessary for

understanding the subject. It presents an overview of what

line drawings are, a general discussion of the grid intersect

code and the generalized chain codes, the triangular and

parallel quantization schemes, an overview of suggested

performance measures for generalized chain codes, and a.4

description of the performance measures to be used in this

thesis to evaluate the performance of the generalized chain.

codes. Chapter III is a brief overview of the algorithrii

developed by Jones used to synthesize line drawings and

quantize line drawings using the triangular quantization

scheme (Ref 10). Chapter IV presents the modifications made

to the Jones' algorithm. These modifications were necessary

to analyze the performance of the chain codes to quantize the

sine waves rotated at an angle above the X-axis, and to allow

intersection points lying within 1/2 of a grid size to be

considered on the ring for quantization purposes. Chapter V

presents the analysis of the performance of the generalized

chain codes with regard to spectral characteristics of the

1-4



.- line drawing being quantized using the triangular quantization

scheme. This analysis will also consider the two

interpetations of defining the next node to be quantized.

Chapter VI presents the conclusions and recommendations for

further study.
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Chapter II

* i" Background

A line drawing is one of man's most common means of

communication, and its processing by computer has attracted

the attention of computer engineers for more than a decade

(Ref 3:57). A line drawing is a two dimensional (2d) image

where information is conveyed by the shape, size, manner of

interconnection, and location of thin lines on a contrasting

background (Ref 1:237). Examples of such drawings include

charts, graphs, maps, and printed or handwritten alpha-numeric

text (Ref 1:237). In these types of drawings the thickness of

lines, their color, or texture of the background have little

or at most symbolic significance (Ref 3:57). For many years

*there has been an awareness that much benefit could be gained

by replacing the traditional paper medium of storage for line

drawings with a computer readable medium (Ref 8:619).

A line drawing is a form of communication, and when we

speak of processing line drawings, we are in reality referring

to processing information (Ref 11:31). The phrase "processing

line drawings" is at times used to refer to two different

operations. one is the extracting of 2d line structures from

line drawing images and the other is processing of line

structures to extract information of interest (Ref 3:60).

This thesis will be concerned with the second-the processing

of line structures as information. Three terms which will be

used frequently are "images", "line drawing", and "line

.



structures". These terms are defined by Freeman as follows:

An image is e natural visual object that is characterized by

the 2d spatial variation of brightness or color or both. It

is objectively sensed by the normal human eye and does not

depend upon assignment of meaning for definition. Examples

* are paintings, photographs, and printed text. A line

structure is a geometrically defined concept, consisting of an

assembly of points, line segements, and curve segments in

Euclidean space. This assembly need not be connected. Line

structures can be precisely defined in an appropriately

selected coordinate system. The term line drawing is used to

denote an image used to convey information about a 2d line

structure (Ref 3: 57-60).

A line sturcture can be represented visually by an image.

the use of an image to convey information is, as in all forms

of modelling, a highly subjective process, dependent upon the

observer, his past experience, the time, the place, and the

context in which the information is conveyed (Ref 3:58). Thus

a line drawing is first of all an image--it can become a line

drawing in the mind of the viewer if he so perceives it (Ref

3:60).

A line structure can originate in one of three ways, and

its origin significantly affects the way which it can be

processed (Ref 3:60). First, a line structure may be
abstractly specified in a geometric sense. This is the case

V. where line drawings serve as a model for line structures (Ref

. 3:60). A second source of line structures if referred to as

11-2
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"tracing". Tracings are derived from the physical world, and

if planar, can be reperesented by line drawings (Ref 3:60).

4 The third source of 2d line structures is images. In this

case, the line structure serves as a model for the information

conveyed by the image (Ref 3:60).

Line structure processing problems can be grouped into

four categories based upon input and output operations. These

four groups are the following: 1. Analysis; 2. Synthesis;

3. Manipulation; 4. Pattern Recognition (Ref 3:60). In

analysis the line structure is given and its characteristics

are determind. The synthesis of line structures is their

generation with certain characteristics and their display by

means of labeled line drawings. Manipulation encompasses the

t ,problems in which line drawings are subjected to different

transformations. Pattern Recognition involves the

classification of line structures (Ref 3:60).

The requirement to have ready and rapid access to vast

amounts of 2d image data has led to a requirement to be able

to efficiently quantize, process, and store such data. One of

the common methods of quantizing 2d images is through 2d

sampling (Ref 10:1). The process involves large amounts of

Ser memory and time.

-lass of 2d images in which rapid access is needed in

., - pplications is maps. The ability to store maps in a

computer data base versus using a paper medium of storage

would significantly decrease the time required to access a

11-3
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specific map. Using current quantization techniques the

* - amount of data required to encode a single map for computer

. storge is in the range of 10-40 megabytes (Ref 8:619). This

data by nature of the quantization method used contains much

S-redundant information (Ref 8:619).

An efficient method of quantizing and encoding line

*, drawings method uses a superimposed cartesian grid on the line

drawing to be quantized (Ref 9:5). This method is commonly

called the grid - intersect quantization method, and line

drawings that are quantized using the method are referred to

as grid-based line drawings (Ref 9:5). The horizontal and

vertical grid line intersections are referred to as nodes.

The quantization of the line drawing is accomplished by

selecting the node that is nearest to the intersection of the

line drawing and the grid lines (Ref 9:5). If the line

drawing crosses the grid lines in such a manner that a single

node would be selected twice in succession it is only selected

once for encoding (Ref 9:5). When successive nodes are

connected by straight line segments a chain is formed (Ref

9:8). The nodes are encoded by a method in which each node is

assigned a binary number which represents its relative

position to the previously selected node (Ref 10:3). The

- sequence of quantizing and encoding the line drawing is

referred to as chain coding.

THE GRID INTERSECT CODE

The simplest chain code is the grid intersect code or (8

*- point) chain code which forms the basis for the family of

11-4
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generalized chain codes (Ref 10:3). This code allows

selection of one of eight possible next nodes. These nodes

form a square which is referred to as a ring. Figure II-1

shows a typical grid and the current node with the eight

possible next nodes.

-- x _ current node

-- . - next possible node

Figure II-1 Possible Next Nodes

Letting the grid mesh be of size q the next node to be

selected must lie within a distance of either q or 2 Vq from

the current node (Ref 6:1). When all possible nodes lie on a

boundary of a square of side 2q and centered about some point

A, the square boundary is called a ring 1 (Ref 6:1). Figure

11-2 shows a ring 1 code grid.

q
..- X- Center of grid

.- Iq .- Possible nodes
q - Grid mesh size

Figure 11-2 Ring 1 code grid

11-5
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The encoding procedure consists of locating the first line

drawing and grid line intersection on ring 1 and the selection

of the grid node nearest to the intersection as the next point

of the quantized set (Ref 10:4). Figure 11-3 is an example

showing the nodes that would be encoded for the line drawing shown

pI.

B C

A D

Figure 11-3 Example Illustrating Grid Intersect Code
Point A was the last previous node to be encoded,
Points B,C,D are the newly encoded nodes
in alphabetical order.

A binary encoding procedure is to associate an octal integer

(3 bit binary number) with each node of the ring as shown in

Figure 11-4 (Ref 10:5).

2(010)
3(011) 1(001)

4(100) 0(000)
X

5(101) L 7(11)
6(110)

Figure 11-4 Encoding Assignments For Ring 1 Code

, *1-6
.
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The assignment of the octal integers to each node is

arbritary but must be consistent for encoding and decoding.

The grid nodes of the quantization process are encoded by

representing the relative position between nodes by one of the

eight octal integers. For example the line drawing of Figure

11-3 would be represented by the chain 107.

HIGHER ORDER CODES

The quantization and encoding procedure can easily be

extended to higher order codes. This is done by allowing the

set of possible next nodes to include nodes from rings other

than ring 1. The generalized chain code can include 16, 24,

32, 48 or even more permissible next nodes (Ref 6:1)

* The generalized chain codes are defined in terms of rings

contained in the code (Ref 7:1). The ring is defined to be a

square of side 2nq with 8n equi-spaced nodes on the perimeter,

located such that nodes are located at each corner of the

square( Ref 7:1). A vector directed from the center of the

ring to any node on the ring is called a "link". (Ref 12:10)

A chain code is formed by selecting a combination of rings.

The code is identified by the set of rings which it contains.

The grid intersect code (8-point) chain code is referred to as

the (1) code, and the code consisting of rings 1 and 2 as the

(1,21 code. The set of permissible next nodes for the (1)

code are as shown in Figure II-i.The set of permissible next

nodes for the (1,2) code are as shown in Figure 11-5.

.11-

i'[! II-7

. . -'.. ." . . . . . . . ......'." -. "" ,-"- """ ..... .... - . " . .- .- ." ' ." .. . -,



X-Current Node

.-Permissible next Nodes

Figure 11-5 Permissible Next Nodes (1,2) Code

The quantization procedure for the generalized chain code

is more complex than that used for the (1) code. Through the

dedfinition of sets of alink gates" many different methods of

selecting links that best approximate the curve can be chosen.

There are also many different configurations possible for the

definition of these link gate sets (LGS)(Ref 12:13). Each

particular definition and configuration yeilds a distinct

quantization scheme. Two of the more common schemes are the

triangular and parallel schemes. These two schemes will be

the only ones discussed in this paper.

Parallel Quantizing Scheme

"5. The LGS of the parallel quantizing scheme are defined by

choosing the highest-order-ring contained in the code and

%finding the midpoints of all pairs of adjacent nodes on that

ring. The next step is to draw two parallel lines for each

" - possible link of the ring from the two neighboring midpoints

on the sides of the link. The two parallel lines are called

: 11-8
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midpoint lines. The LGS is thereby defined as the parallel

ring segments cut from each ring the the adjacent midpoint

lines. This process is repeated for each ring contained in

the code to define the LGS for each level of the code. The

set of all possible LGS for a particular code is called the

"template" for that code (Ref 12:15).

The actual quantization procedure now consists of a search

for the highest-order-ring link for which all link gates

intersect the curve. The search begins with the center of

the template lying on the last encoded node. The next step is

to locate all intersections points of the curve and all rings

contained in the code. Then a check is made to determine if

all intersections are contained in the LGS for the highest-

order-ring of the code if so then the associated node is

selected for encoding. If all of the curve and ring

intersections are not contained in the LGS for the highest-

order-ring of the code then the process is repeated for the

next lower order ring of the code until all curve and ring

intersections are contained in the LGS of a ring. The LGS of

the lowest-order-ring will always meet the quantization

criterion (Ref 12:15). This process is repeated until the

line drawing is quantized and encoded. Figure 11-6 shows the

templates associated with Rings 1,2, and 3 using the parallel

quantization scheme. Figure 11-7 shows the generalized form of

a LGS for the parallel quantizing scheme.

11-9
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(a) (b)

(c)

Figure 11-6 Parallel Quantization Scheme Templates
(a) Ring 1, (b) Ring 2, (c) Ring 3

11-10
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Figure 11-7 Generalized Form of a Link Gate Set
Parallel Quantizing Scheme

Trianqular Quantization Scheme

The LGS defining the triangular quantization scheme are

formed by selecting the highest-order-ring of the code and

finding the midpoints of all adjacent nodes on the ring.

Lines are then drawn from the midpoints to the center of the

ring. These lines are referred to as "midpoint lines". The

parallel segments cut out of each ring by a pair of midpoint

lines form the LGS for the highest-order-ring. This process

is repeated for each ring contained in the code. This process

* forms the template for the triangualar quantization scheme

(Ref 12:19).

The quantization procedure consists of a search for the

highest-order-ring for which all link gates intersect the

curve. The search begins by placing the center of the template

over the last node to be encoded. The LGS for the highest-

order-ring in the code is checked to determine whether all

link gates intersect the curve if not the next lower-order-

ring is checked, this process continues until a ring is found

in which all link gates intersect the curve or the lowest

order ring in the code is reached. If all link gates

'I-li



intersect the curve then the node associated with that LGS is

quantized and encoded and the process is repeated for the next

node to be quantized and encoded. If the lowest-order-ring is

reached before all link gates intersect the curve then there

are two methods for selecting the node to be quantized and

encoded. The first method is to find the first intersection

between the line drawing and the grid lines and locate the

node nearest to that intersection and quantize and encode it

as the next node ( Ref 10:8). The second method is to find

the first intersection of the line drawing and the lowest-

order-ring and select the node nearest to that intersection

and quantize and encode it as the next node ( Ref 10:8).
.4

Figure 11-8 shows the templates associated with the triangular

quantization scheme for Rings 1,2, and 3. Figure 11-9 shows

the generalized form of the LGS for triangualr quantization

scheme.

1-.
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(a)(b

(c)

Figure 11-8 Tringular Quantization Scheme Templates
(a) Ring 1, (b) Ring 2, (c) Ring 3

*0~ 
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Figure 11-9 Genral LGS for Triangular Qantization
-a Scheme

As can be seen from Figure II-6a and Figure II-8a the

parallel and triangular quantization schemes are the same for

single ring codes. The encoding procedure for the generalized

chain codes is essentially the same as for the 1-code. A

binary number is assigned to each node on every ring of the

code. If it is known in advance which ring will be used vost

freqently then the assignment of binary nuriiars t-o nodes can

begin with that ring thereby minimizing the number of bits

required to encode a particular line drawing. In all cases

the assignment of binary numbers to the nodes must be the same

for encoding and decoding.

EVALUATION OF GENERALIZED CHAIN CODES

The standards for evaluation of the quantization of line-

drawings are very subjective. Presently there are six

'p4  
suggested major criteria for evaluating the effectiveness of a

coding scheme for line-drawing data; these criteria are the

following: 1. Compactness; 2. Precision; 3. Smoothness;

4. ease of selective access; 5. ease of processing; 6.

ease of encoding and decoding (Ref 13:315). These criteria

1 - i>. II-14
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are given different weights during evaluation depending upon

the application of the quantized line drawing data.

Compactness is the amount of storage space required to

- store a given line-drawing or if the data is being transmitted

the amount of time-bandwidth required to transmit the data.

The more compact the quantization means the less storage space

and transmission time-bandwidth required. However to achieve

high compactness, tradeoffs must be made with the other five

criteria. The more compact the quantization scheme is will
-..'

lead to increased complexity in encoding, decoding, and

processing (Ref 13:315).

Precision is extremely important if the line drawing data

is to be used for quantitative analysis. This is extremely

important if the line-drawing data is a geographic map ( Ref

6:1). The precision of the quantization is highly dependent

upon grid size. Thus by using a very small grid size in

relation to the raduis of curvature of the line-drawing and

low order codes precision can be made very high but at a cost

to the other criteria, specifically compactness.

Ease of selective access refers to the relative speed

with which any particular portion of a quantized line-drawing

may be accessed C Ref 13:316). This criterion takes on added

significance when the quantized line-drawing data represents a

geographical map. Generally the access criterion leads to a

decrease in compactness and hence increased storage and

transmission time-bandwidth requirements ( Ref 13:316).

--Ease of processing refers to the simplicity and speed of
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the algorithms used to quantize the line-drawing. This

criterion is very dependent upon the application of the

quantized line-drawing. If the line-drawing is to be stored

then the ease of processing could become less important than

the compactness criterion, however if the data requires

frequent processing the ease of processing criterion will take

precedence.

Ease of encoding and decoding become extremely important

if large amounts of data are involved. For small quanities of

data which requires extesisve processing the ease of

processing criterion will take precedence over ease of

encoding and decoding (Ref 6:1).

Quanitative Evaluation of Generalized Chain Codes

As stated previously the common means of evaluating the

performance of the generalized chain codes has been very
. 4

subjective. This thesis effort will utilize two of the

previously stated performance criteria to quantitatively

analyze the performance of the generalized chain codes. The

two criteria that will be used are the precision and

compactness criterion or in terms of information theory

accuracy and code rate.

Accuracy in general terms refers to how closely the

digitized line drawing approximates the original line drawing.

To measure the accuracy of the digitized representation of the

line drawing the concept of distortion is used. The

... %.*." distortion measure which will be used is defined as a length

.4 11
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normalized measure of area between the original line drawing

and its quantized approximation(Ref 19:979).

The length normalized area error is obtained by summing

all of the incremental areas lying between the orginal line

drawing and its digitized representation and then dividing

that total area by the length of the orginal line drawing in

terms of grid size. Figure II-10 shows a typical line drawing

that could be encoded using the 1-code and the resulting

* .* incremental area errors.

Figure II-10 The incremental area error is shown by the
shaded area

* Figure II-11 shows the area error of a straight line defined

* by Y - X/2 which is quantized using the 1-code with grid of

size q.
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Quntze usin the 1-Code. Shaded- -

I.

Figure 11-il Area Error of a Straight line YX/2
Quantized using the 1-Code. Shaded

areas are the area errors.

The area error for the straight line quantized in Figure II-i1

is calculated as follows.

Area of a Triangle 1/2 2 Y2 1
3Y3 1

+ (X1*Y2 + X3*Y1 + X2*Y3 - X3*Y2 - X2*Y1 -X1*Y3)

wWhere the sign is chosen so that the area is non negative.
(X1,IY) - 0,0 (X2,Y2) = 1,1 (X3,Y3) = 2,1

2
+ 1/2(0+0+1-2-0-0) - .q

By symmetry it can be shown that the area of the other

remaining triangles are the same. Thus for the quantization

of the line drawing shown in Figure II-1I the total area error
2

is q

To find the normalized area error which is the

distortion measure being used the total area error must be

normalized by the length of the quantized line. For the line

drawing shown in Figure II-11 the length of the line is defined

by Length = nq/cos( e). Thus for the line drawing of Figure

11-11 when quantized by a 1-code using a grid of size q the
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area error per length q is .2236068. The area error per grid
size for other types of line drawings can be calculated in the

same manner although it is not as straight forward as it is

for a straight line. A detailed discussion of the distortion

measure being used can be found in references 1 and 19.

The code rate performance measure refers to the number of

bits required to quantize a length q of the line drawing.

This measure is obtained by determing the number of bits

required to represent all of the next possible nodes. For

example if a 1-code were being used 3 bits would be required

and if a 1,2-code were being used 5 bits would be required to

reperesent the next possible nodes. Using the 1-code to

quantize the line drawing shown in Figure II-11 the code rate

performance measure is defined as R = 3Cos( E )/Nq. For the

line drawing and 1-code shown in Figure II-11, R = 2.6832816

bits per length q of the original line drawing. A more

detailed presentation of the code rate performance measure can

be found in references 1 and 19.

SUMMARY

The concept of line-drawings and methods of processing

line-drawings were introduced and discussed. The concept of

Gird-Intersect Code and Generalized Chain Codes were

introduced and discussed. The quantization and encoding

procedures for the codes were discussed and a set of criteria

for evaluating the code was presented.
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Chapter III

SOFTWARE OVERVIEW

This chapter presents a brief overview of the software

algorithm designed and implemented by Jones, ref 10. The

algorithm as developed by Jones was designed specifically for

the quantization of sine and circular waves. The quantization

method implemented by Jones was the triangular scheme as

described in Chapter II. The overview of the algorithm will

consist of a brief description of the input parameters, the

simulation of the line drawing, the calculation of the

intersect points, the calculation of the nodes of

quantization, and the calculation of the performance measures.

Input Parameters

The input parameters required for execution of the

algorithm are: 1). The type of function to be quantized(1-sine

wave, 2-circular wave); 2). The period of the function to

which *7r x .001 is added to prevent the instaneous phase being

*the same in any two grid squares; 3). The amplitude of the

functions if it is a sine wave(C The amplitude of the circular

wave is calculated by the algorithm to be 1/4 of the period);

4). The grid size is a variable input but since the amplitude

and period of the functions are measured in terms of the grid

size it is essentially a constant; 5). The phase shift of the

functions in radians; 6). The number of periods of the

function to be quantized; 7). The number of rings contained

.-. *_ - o•*. , . .. . ; j . -
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in the quantization code; 8). The specific codes to be used in

the quantization. Input 7 specifies the number of rings in

the quantizing code for example the (1,3) code has two rings

and input 7 would be 2. Input 8 is the rings of the code such

as for the (1,3) code input 8 would consist of two entries 1

and 3.

Line Drawing Simulation

To simulate a line drawing specified by a function, the

following must be defined: The function; its inverse; and its

derivative.These functions were implemented by Jones in his

algorithm using the functions F, DF, FINV respectively. The

detailed descriptions of these functions can be found in ref

10 pages 22 - 25.

Calculation of Grid Intersects

The calculation of the grid intersects is accomplished

through the use of the two subroutines FIP and CIBD.

FIP When the grid intersects are to be calculated the

subroutine FIP is called by the main program. The FIP

subroutine requires three inputs for execution. These three

inputs are the location of the first grid intersect to be

calculated, the subscript of the first available storage

location in the grid intersect array, and the largest

subscript of the grid intersect array. The largest subscript

of the grid intersect array is calculated in the main program

as one less than the dimensions of the array minus twice the

amplitude of the function being quantized(Ref 10:26). The
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other inputs to the subroutine are zero and one for the first

time the subroutine is called by the main program. The zero

indicates the position on the X axis and the one is the first

subscript of the grid intersect array. The subroutine uses a

flag to indicate to the calling program whether it has

calculated all of the grid intersects of the line drawing

prior to returning. The FIP subroutine only calculates the

vertical grid line intersects. Subroutine CIBD is called to

perform the calculation of the horizontal grid line

intersects. In addition to calling CIBD subroutine FIP calls

functions F, DF to calculate the vertical grid intersects

(Ref 10:26-30).

CIBD The CIBD subroutine is used to calculate the horizontal

grid intersects within a certain interval. The inputs to CIBD

,£ are the ordinate values of the end points of the interval, and

the derivative of the function at the end points of the

interval. CIBD calls function FINV to determine the value of

1"the abcissa for a particular ordinate value(Ref 10:30-31)

Node of Quantization Calculation

These calculations are performed by the set of five

subroutines: GERD; FNSRI; FNGN; FAR; and ANGLE. These

subroutines are independent of the line being quantized.

These subroutines are dependent upon only the quantization

scheme being used to quantize the line drawing, which in this

case is the triangular scheme which was described in Chapter

II. The subroutine GERD performs the actual quantization of
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- the line drawing utilizing FNSRI, FNGN, FAR, and ANGLE to

perform associated quantizing tasks.

GERD The input to GERD is the flag set by subroutine FIP

*? indicating whether or not all intersect points for the line

drawing have been calculated. GERD reads the intersect points

calculated by FIP from the intersect point storage array and

calculates the encoded nodes. The encoded nodes are stored in

an array with the same dimensions as the intersect point

array. GERD calls subroutines FNGN, FNSRI, FAR, and ANGLE to

perform the calculation of the encoded nodes(Ref 10:32-34).

FNSRI This subroutine is used to find the first grid

intersect point lying on the code ring. The inputs to this

subroutine are the level of the code ring being considered,

* and the subscript of the last encoded node which is the center

of the ring. The subroutine returns either the subscript of

the grid intersect that lies on the ring or a zero indicating

that it did not find a grid intersect point lying on the

ring(Ref 10:34).

FNGN This subroutine calculates the coordinates of the grid

node lying closest to a grid intersect point. The input to

to this subroutine is the subscript of the grid intersect

point for which the node coordinates are to be calculated.

This subroutine returns the values of the X and Y coordinates

of the grid node lying closest to the inputted intersect

point(Ref 10:35).

FAR This subroutine calculates the midpoints of the grid
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nodes. The inputs to this subroutine are the subscript oP the

node lying in the center of the ring, the code level being

considered, and the coordinates of the grid node for which the

midpoints are to be calculated. The subroutine returns the

angles associated with the midpoints and the center of the

ring and a flag indicating in which quadrant the angles are

located. This subroutine calls subroutine ANGLE to calculate

the angle subtended by a line drawn from the center of the

ring to a midpoint and the horizontal grid line of the center

of the ring(Ref 10:35-36).

ANGLE This subroutine calculates the angle subtended by a

line drawn from the center of a ring to a point on the ring

and the horizontal grid line of the center of the ring. The

inputs to this subroutine are the subscript of the center of

the ring and the coordinates of a point on the ring. The

subroutine returns the angle subtended in radians(Ref 10:37).

Performance Measure Calculations

The calculation of the performance measures requires the

use of eight subroutines. These subroutines are: CAE; CAESL;

FDE; DFDE; ZERO; CLI; FDLI; and SPGQI. These subroutines are

used to calculate the area error and path length of the line

drawing for some arbitrary interval.

CAE This subroutine divides the line drawing into intervals

corresponding to the line segments which are used to

approximate the line drawing and is the first subroutine

called when error calculations are to be performed. The

1
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inputs to this subroutine are the end points of the interval

for which the area error is to be calculated. The subroutine

returns the area error for the interval. The subroutine calls

subroutine CAESL(Ref 10:38-39).

CAESL This subroutine divides the intervals given to it by

subroutine CAE into intervals for which the integrand defining

the area error is strictly positive or negative. The inputs

to the subroutine are the end points of the intervals

calculated by subroutine CAE. The subroutine returns the area

error for the interval inputted. The subroutine calls

subroutines ZERO and SPGQI(Ref 10:39).

ZERO This subroutine is used to find the zero of an inputted

function within a given interval. The subroutine uses the

V modified regula falsi algorithm to calculate the zero of the

given function. A detailed description of the modified regula

falsi algorithm can be found in reference 21 chapter 2. The

inputs to the subroutine are the function for which the zero

is to be found and the end points of the interval in which a

zero lies. The subroutine returns the value of the X

coordinate for which the inputted function has a zero. The

inputted functions are either FDE or DFDE(Ref 10:39).

SPGQI This subroutine uses the six-point Gaussian Quadrature

Iteration Algorithm to perform the numerical integration of a

4/ particular function over a given interval. A complete

discussion of numerical integration can be found in references

21 - 26. The inputs to the subroutine are the function to be
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-•integrated and the end points of the interval of integration.

The subroutine returns the value of the integral(Ref 10:40).

FDE This function evaluates the integrand defining the area

error for some given time. The input to the function is the

particular value for which the integrand is to be evaluated.

This function calls function DF which calculates the

derivative of the function defining the line drawing at the

inputted time. This function is an inputted function to

subroutines ZERO and SPGQI.

DFDE This function evaluates the derivative of the integrand

defining the area error for some given time. The input to the

function is the particular value for which the derivative is

desired. This function calls function DF which calculates

,~ the derviative of the function defining the line drawing at

the inputted time. This function is an inputted function to

subroutines ZERO and SPGQI.

CLI This subroutine calculates the path lenth of the line

drawing over an interval. The inputs to the subroutine are

the end points of the interval. The output of the subroutine

is the path length of the particular line drawing@n the

" inputted interval. This subroutine calls function FDLI

" .(Ref 10:40).

SFDLI This function calculates the value of the integrand

, definding the path length of the line drawing. The input to

. the function is the particular value for which the integrand

is to be evaluated. This function is an inputted function to

11-7
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SPGQI. This function calls function DF which calculates the

derivative of the function defining the line drawing for the

inputted value.

Summary

This chapter provided a brief overview of the algorithm

developed and implemented by Jones and used in this thesis.

2Vo
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Chapter IV

Algorithm Modifications

The algorithm developed and implemented by Jones reference 10

required modification to allow the selection of a grid

intersect lying within one-half of a grid size of the ring to

be considered on the ring for quantization. The Jones

algorithm was designed to select only those intersect points

which were lying exactly on the ring for quantization. The

algorithm also required extensive modification to implement

the quantization of a rotated sine wave. The modification

required to implement the selection of a grid intersect lying

.' within one-half of a grid size will be discussed first since

it was a slight modification.

Grid Intersect Selection Modification

This modification only required the alteration of the

subroutine FNSRI. The subroutine as written by Jones required

a grid intersect to lie exactly on the ring to be considered

as being on the ring for quantization purposes. This

subroutine was modified to allow a grid intersect lying within

one-half of a grid size to be considered to be on the ring.

The area in which a grid intersect must lie and still be

considered as on the ring for quantization is called the

capture region. Thus, as implemented by Jones, the capture

region was zero. The modification yields a capture region of

one-half grid size and the region is a ring of one grid size

in depth centered on the encoding ring. Figure IV-1 shows an

example of the capture region for a (2) code ring.

IV-1
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*IF(XDIS.E.DVR)*E) KXTmO

IF( (YDIS.GT.DVR-.5*DEL) .AND.
IF(YDIS.LT.DVR.+.5*DEL)) KYT=O

Figure IV-2B Modified Code
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S. Rotated Sine Wave Modification

The implementation of the rotated sine wave required

extensive modification of the Jones algorithm. The initial

effort to rotate the sine wave was by defining the rotated

sine wave by the function Y = Tan(angle of rotation) +

Amplitude * Sine(2*7' * T + 0 ). Further analysis revealed

that this function was not a true rotation of the sine wave

but was rather a translation of the sine wave. After a search

of the literature it was determined that a point by point

rotation would have to be performed to rotate the sine wave.

Also it was realized that the rotation produced a multivalued

function and hence the new function would not be uniquely

invertible. Further complicating the problem was that an

exact mathematical expression for the function mapping the

rotated points could not be determined. The functions

performing the rotation of the points are as shown in Figure

IV-3(Ref 20:80).

X - x * Cosine(rota) - y * Sine(rota)
Y = x * Sine(rota) + y * Cosine(rota)

rota - angle of rotation X,Y are new coordinates
defined in relation to original axis

Figure IV-3 Point Rotation Functions

• • Based upon the problems outlined above the assumptions

S.made in Chapter I have to be modified since the line drawing

,* cannot be described by an exact mathematical function. The
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problem of not being able to describe the function that maps

the rotated points also means that the inverse of the function

defining the line drawing and the derivative of the function

defining the line drawing cannot be described by an exact

mathematical expression. These problems required the

following modifications be made on Jones algorithm to quantize

a rotated sine wave. The discussion of the modifications will

follow the order in which they are encountered in the Jones

algorithm.

Main Program The first modification required was to add the

angle of rotation to the inputs and outputs of the algorithm.

The second modification required is the calculation of the

path length of the wave form over one period. Since the sine

wave is rotated at some angle of rotation above the X-axis the

period of the sine wave without rotation will be related to

the period of the rotated sine wave by the cosine of the angle

of rotation. The new starting point of the sine wave must

also be determined. Using the initial value of zero for the

starting point of the sine wave on the X-axis the rotated sine

wave will have a starting point of the negative amplitude of

the orginal sine wave multiplied by the sine of the angle of

rotation. The orginal lines of code and the modified lines of

code in the main program are as shown in Figures IV-4A and B

respectively.

IV.
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IF(NF.EQ.1) READ(*,*) A,PER,THETA
WRITE(*,120) A,PER,THETA

120 FORMAT (25X,5H A: , E17.10/25X,7HPER: ,E17.10/
+ 25X,9H THETA: ,E17.10)

CALL CLI(0,PER,VLIPP)

Figure IV-4A Original Code

IF(NF.EQ.1) READ(*,*) A,PER,THETA,ROTA
WRITE(*,120) A,PER,THETA,ROTA

120 FORMAT (25X,5H A: ,El7.10/25X,7HPER: , E17.10/
+ 25X,9H THETA:,E17.10/25X,10HROTATE: ,E17.10)

G = F(O.0)
P = - G * SINE(ROTA)

PER = PER * COSINE(ROTA)
TS = 0.0
LNIP = 1

LENIP = 100
CALL FIP(TS,LNIP,LENIP,JFIN)

LB = 1
ST = 0.0

CALL CLI(ST,PER,VLIPP)

Figure IV-4B Modified Code

Find Intersect Points

The problem of finding the intersect points for a line

drawing which is generated by the point to point rotation of

another line drawing required the writing of four new

subroutines. The Jones algorithm used the knowledge of the

inverse of the function defining the line drawing to calculate

the horizontal gird intersect points. Since the function

mapping the rotated points could not be described in an exact

mathematical sense neither could its inverse. To overcome

IV-5
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this problem a line following procedure was used to calculate

the intersect points. This technique requires repeated

evaluations of the function F which generates the sine wave on

the X-axis and the subroutine ROTATE which performs the point

by point rotation of the values inputted to function F and

returned by function F. The line following technique also

require continous checking to determine if a gridline has been

crossed and in what direction the crossing was made. These

tasks were implemented by the subroutines FIP, ROTATE, and

GCROSS and by function F. Function F did not require any

modification and will not be discussed.

FIP The inputs and outputs of this subroutine are the same as

described in Chapter II. The first step required by the

subroutine is to establish accounting variables which are the

same as described by Jones, reference 10 pages 26 - 30. The

next step performed by FIP is to determine if the variable

TSTART is equal to zero. If TSTART is equal to zero. the

subroutine INITPT is called. Subroutine INITPT ensures that

that the first grid intersect to be encoded lies in the right

half plane of the cartesian coordinate system. If INITPT is

called it will calculate the first grid intersect point and

increment the pointer to the grid intersect array. If

subroutine INITPT is not called then the subroutine ROTATE

will be called. The subroutine calculates the coordinates of
the rotated points for a particular value inputted. The

variables RT and RFT are the new X and Y coordinates
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calculated by subroutine ROTATE and are returned to subroutine

FIP by the common block CR. The variables RT and RFT are then

stored as the first intersect points and the intersect array

pointer NIP is incremented. The next step is to initialize

the variables IX and IY. These variables are set equal to the

integer values of RT and RFT respectively. These variables

are used in the calculation of grid line crossings. The value

TI is then incremented by two tenths of a grid size and

renamed as T2. The subroutine ROTATE is called to calculate

the new values of RT and RFT. After returning from subroutine

ROTATE the subroutine GCROSS is called to determine if a grid

line has been crossed. If a grid line has not been crossed

the variable T2 is incremented by two tenths of a grid size

and the process is repeated until a grid line crossing is

detected by subroutine GCROSS. If a grid line crossing is

detected by GCROSS it returns a flag value greater than zero

to subroutine PIP. The variable T is then set equal to the

variable T2 minus two tenths of a grid size. A binary search

algorithm is then initiated to determine the value of T. for

which the grid line crossing occurred. The value of T chosen

is within .00625 of the actual value for which the grid

crossing occurred. Subroutines ROTATE and GCROSS are called in

the binary search. The next step is to store the values of RT

and RFT calculated for the last value of T in the intersect

array and increment NIP. The next step is to check the flag

value returned by subroutine GCROSS and determine the new

values of variables IX and IY. The new values are determined
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by the value of the flag passed from subroutine GCROSS via the

common block CR. The values of both IX and IY can be changed

in either negatively or positively, simultaneously or

separately depending upon the value of the flag set by GCROSS.

This process continues until the end of the line drawing is

reached or until the varaible NLIMIT is reached. NLIMIT is

calculated in the main program as described in Chapter III.

If NIP exceeds NLIMIT prior to calculating all of the grid

intersect points of the line drawing the variable JFIN is set

equal to zero indicating to the main program that there are

more intersect points to be calculated. TSTART is set equal

to the last value of T2 and NIP is set equal to NIP -1 and a

return is made to the main program.

ROTATE This subroutine is called by subroutine FIP and calls

function F. This subroutine uses the expressions of Figure
-.

IV-3 to calculate the rotated points for an inputted value of

X. The subroutine calls function F to calculate the value of

the line drawing on the X-axis and then performs the.

transformation of the points to generate the rotated sine

wave. The coordinates of the rotated points are then passed

to subroutine FIP via the variables RT, and RFT through the

common block CR.

INITPT This subroutine is called by subroutine FIP to ensure

that the first grid intersect to be calculted lies in the

right hand plane of the cartesian coordinate system. INITPT

calls the subroutine ROTATE to evaluate the value of variable

IV-8
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RT to determine if RT is greater than or equal to zero. If RT

is equal to zero the values of RT and RFT are stored as the

coordinates of the first intersect point and NIP the pointer

to the intersect point storage array is incremented. The

variables IX and IY are then initialized. IX is initialized

as zero and IY is initialized as the integer value of variable

RFT. T1 is then set equal to TSTART and a return to FIP is

made. If RT is less than zero TSTART is incremented by one

grid size and subroutine ROTATE is called to calculate the

associated value of RT, this process continues until RT is

greater than or equal to zero. If a value of TSTART is found

for which RT is equal to zero the initialization process

described above is followed and a return is made to FIP. If

RT is greater than zero a binary search algorithm is initiated

to find the value of TSTART which will ensure that the first

intersect point to be stored lies in the right hand plane.

Once the value of TSTART has been determined the variables IX

and IY are initialilized as described above. The values of RT

and RFT are stored in the intersect point array and the

intersect point array pointer NIP is incremented. TI is set

equal to TSTART and a return to FIP is made.

GCROSS This subroutine is called by subroutines FIP and

INITPT to determine whether a grid line crossing has occurred.

The inputs and outputs of the subroutine are through the

common block CR. The first action the subroutine takes is to

initialize the flags indicating whether a grid line has been

crossed. These flags are IFLAGX and IFLAGY which indicate

IV-9
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whether the vertical or horizontal grid line has been crossed

respectively. The next step is to determine which grid lines

can be considered as possible candidates to be crossed. This

is accomplished by determining whether IX and IY are positive

or negative and then either adding or subtracting DEL to IX

and IY to initialize the variables IXU,IXL,IYU,IYL. The

variables determine the upper and lower bounds for grid line

crossings for the vertical and horizontal gridlines

respectively. The next step is to determine if a grid line

has been crossed and which grid line was crossed. If RT is

greater than IXU or less then IXL a vertical grid line has

been crossed. IF RFT is greater than IYU or less than IYL a

horizontal grid line has been crossed. If a grid line has

been crossed the flags, IFLAGX and IFLAGY, are set to indicate

which grid line was crossed. The next step is to set IFLAG

equal to the sum of IFLAGX and IFLAGY. If the sum is greater

than zero a grid line crossing has occurred. The value of

IFLAG is passed to FIP via the common block CR. A return to

FIP is then made.
LA

Node of Quantization Calculation

This section of the Jones algorithm required only one

modification to perform the quantization of the rotated sine

wave. The subroutine FNSRI had to be modified to allow grid

intersects that did not lie exactly upon the ring to be

considered on the ring. This modification was performed in

the same manner as described in Chapter III. The capture
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region for the ring was set at two tenths of the grid size

rather than half the grid size as described in Chapter III.

Performance Parameter Calculations

An extensive amount of modification was required in the

subroutines that calculate the performance parameters. These

S modifications were required due to the fact that an exact

mathematical expression could not be developed that would map

the points of the rotated sine wave. Since an exact

Sm expression for the points defining the rotated sine wave could

not be developed it was necessary to generate a function that

would approximate a function that would map the points of the

rotated sine wave. The modifications made to the subroutines

and functions of the Jones algorithm will be discussed first

and then the subroutine used to generate the approximation of

the function defining the rotated sine wave will be discussed.

FDE The modification made to function FDE was slight. The

modification was required due to the inability to describe the

line drawing being quantized by an exact mathematical

expression. The original code and the modified code are as

shown in Figures IV-5 A and B respectively.

FDE = F(X) - S*(X-XGN(LB)) - YGN(LB)

Figure IV-5A Original Code Function FDE
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FDE - APROX(X) - S*(X-XGN(LB)) - YGN(LB)

Figure IV-5B Modified Code Function FDE

DFDE Since the points defining the rotated sine wave could

not be described by an exact mathematical expression the

derivative also can not be found directly. To find the

derivative at a certain point numerical differentiation was

used. To minimize the error inherent in numerical

differentiation the following expression was used to evaluate

the derivative at a given point. f(x) = (F(x + h) - F(x -

h))/(2. * h) (Ref 21:278). The value of h must be chosen

sufficiently small to provide reasonable accuracy in the

evaluation of the expression for some value of X. In this

function the value of h was chosen to be .003. Figures IV-6A

and B show the orginal code and the modified code

respectively.

"1

DFDE = DF(X) - S

Figure IV-6A Original Code Function DFDE

H =3.E-3
Z =X+H
W=X -H

DFDE = (((APROX(Z) - APROX(W))/(2.*H)) - S

Figure IV-6B Modified Code Function DFDE

FDLI The modification made to this function is similiar to
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that made in function DFDE. Numerical differentation is also

required since the derivative of the function defining the

line drawing is required. The orginal code and the modified

code is as shown in Figures IV-7A and B respectively.

FDLI = SQRT(1. + DF(X)*DF(X))

Figure IV-7A Original Code Function FDLI

H = 3.E-3
,... Z =X + H
.-- [-.._..W = X - H

DF = (APROX(Z) - APROX(W))/(2. * H)
FDLI = SQRT(1. + DF*DF)

Figure IV-7B Modified Code Function FDLI

APROX Function APROX is based upon the Weierstrass

Theorem(Ref 25:26). The Weierstrass Theorem states that for

some continous function on a closed bounded interval that

there exists some polynomial, p, such that for all X in the

closed bounded interval the inequality f(x) - p(x) 5C

holds(Ref 25:26). Using the results of th. Weierstrass

Theorem it has been shown that there exist.- a nique

polynomial which satisfies the Weierstrass Theorem(Ref _j: 29-

30). There are several forms of the polynomial which can be

used to interpolate the fuction. Some of the more common

forms are the La Grange(Ordinate form), Newton's Interpolating

Polynomials(Difference form), and the Aitken-Neville Repeated

(Iterated) Linear Interpolation (Ref 24:203-238).

IV-13
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The La Grange interpolating polynomial was seleted to

provide the aproximation of the line drawing as it could be

used when the abcissa values are arbitary but distinct(Ref

24:233) A detailed discussion of the La Grange interpolating

polynomial algorithm can be found in reference 24. A

discussion of how the algorithm was implemented is provided.

La Grange Interplolating Polynomial Implementation -

The input to the function APROX is the value of X for which

the approximation is desired. The first step of the function

is to initialize control variables. The first variable

intialized is NP1 which is set as five which means that five

points will be used by the approximating algorithm and the

order of the approximating polynomial will be four. The next

variable initialized is RAN which is set equal to the inputted

value of X minus one. This value is chosen to ensure that the

inputted value will be within the interval of the points used

in the approximation. The variable L is set equal to the

-. variable LB in common block CAEP. This variable is used as a

-. pointer to the intersect points stored in the intersect point

array. The next step is to determine if RAN is less than

zero. If RAN is less than zero the first five intersect points

will be used by the approximating algorithm. If RAN is

greater than zero a comparison of the X coordinates of the

intersect points stored in the intersect point array pointed

to by L is performed until an intersect point is found which

is greater than or equal to RAN. A test is then performed to

IV-1 4
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ensure that the value of NIP will not be exceeded during the

-- execution of the La Grange interpolating polynomial algorithm.

Summary

In this chapter the modifications to the Jones algorithm

required to allow the selection of grid interect lying within

one-half of a grid size of the ring and the quantization of a

*" rotated sine wave were discussed.

.1
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Chapter V

Performance Analysis

In this chapter the performance of the generalized chain

codes will be analyzed. The performance of the individual

codes will be examined and then their performances will be

compared. Last the effect of enlarging the capture region

will be analyzed and then the performance of the algorithm

used to quantize the rotated sinusoids will analyzed.

The performance of the codes will be evaluated using the

parameters of area error and code rate as described in chapter

II. Appendix A contains all of the figures and tables

referenced in this chapter pertaining to performance of the

codes.

Individual Code Performance

The (1), (1,2), (1,3), and (1,2,3) codes were selected

for analysis and were used to quantize identical sinusoids.

Four sets of sinusiods were quantized to generate the data for

' "the analysis. Set one was sinusoids with a constant period of

10 and amplitudes varying from 2 to 100. Set two was

sinusiods with a constant period of 20 and amplitudes varying

from 5.1 to 6.0. Set three was sinusoids of period 20 and

amplitudes varying from 5 to 60. Set four was a set of

sinusoids of periods 10 and 20 with amplitudes of 500 and 1000

for each period. The performance of the individual codes will

be analyzed with respect to their ability to quantize the four

sets of sinusoids as described above.

V-1
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(1) Code This code experienced a wide flucuation in the

area error and code rate performance. Figures A-I thru A-4

show the performance of the (1) code quantizing the sinusoids

of period 10 and amplitudes varying from 2 to 100. The area

error performance was generally poor for this code as expected

due to the limited angular resulotion of the code. The best

area error performance was for amplitude of 2 and then as the

amplitude was increased the area error increased. The best

code rate was also for amplitude 2 and again as the amplitude

increased the code rate increased. It was noted that the area

error appears upperbounded by .25 and the code rate by 3.0.

The quantization of the sinusoids with a period of 20 and

amplitudes varying from 5.1 to 6.0 produced some surprising

results. Figures A-5 and A-6 portray the performance of the

(1) code quantizing the sinudoids. The data generated by the

quantization of the sinusoids of period 20 and amplitudes of

5.1 to 6.0 indicates that the position of the point of zero

slope of the sinusoid with respect to the horizontal grid

lines has a direct influence on the area error performance of

the code. This was checked to determine if this performance

was just a quirk but the quantization of sinusoids of period

20 and amplitudes varying from 10.0 to 11.0 and 20.0 to 21.0

produced similiar results as shown by Table A-2. The code rate

did not change appreciably as was expected for such a small

change in amplitude.

Figure A-7 depicts the performance of the (1) code when

quantizing sinusoids of period 20 and amplitudes ranging from

p.
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5.0 to 60.0. The performance of the code again decreased as

the amplitude increased. Again it was noted that the code

rate was upper bounded by 3.0 and the area error performance

was upper bounded by .25.

The quantization of the sinusoids of periods 10 and 20

with amplitudes of 500 and 1000 revealed some interesting

results. The asymptotic code rate and area error for these

sinusoids are depicted in Table A-I and again it appears that

the area error is uppper bounded by .25 and the code rate is

* -.°upper bounded by 3.0. Since the amplitudes of these sinusoids

were extremely high as compared to the periods, it can be

assumed with little loss of accuracy that the waveform looks

like a straight line within any single grid square. If this

approximation is made, then it can be shown graphically that

this is the highest code rate and area error that can be

C expected from the (1) code.

The (1) code as discussed above degrades very rapidly as

the amplitude to period ratio is increased. There also seems

to be a very strong link between the position of the point of

zero slope of the sinusoid with respect to the horizontal grid

lines of the qunatizing grid and the area error performance of

the (1) code as illustrated by Figures A-5 thur A-6 and Table

A-2.

(12) Code The analysis of the data generated by the

". (1,2) code quantizing the sets of sinusoids produced some

O surprising results. Figures A-8 thru A-11 depict the

V-3
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performance of the (1,2) code quantizing sinusoids with

periods of 10 and amplitudes varying from 2 to 100. The area

error of the (1,2) code increased as the amplitude increased.

The code rate of the (1,2) code increased dramatically when

the amplitude was increased from 2 to 4. The code rate

decreased to about the rate for amplitude 2 for amplitudes

6,8, and 10 as shown in Figure A-8b. The code rate exhibited a

large increase as the amplitude was increased from 10 to 14

and then changed minimally as the amplitude was increased from

14 to 16 as shown by Figure A-9a. The code rate exhibited a

steady increase as the amplitude was increased from 16 to 100.

• ,These results were surprising since it was anticipated that

the code rate and area error would decrease as the amplitude

to period ratio increased. This was anticipated since as the

amplitude to period ratio increased the waveform being

quantized would begin to look more and more like a straight

• . line within any two adjacent grid squares. Thus it was

anticipated that the nodes lying of the second ring would be

selected with higher frequency as the amplitude to period

ration increased. The area error for this set of sinusoids

seemed to be upper bounded by .24 and the code rate upper

bounded by 3.60 as depicted by Figure A-11.

• The performance of the (1,2) code when quantizing

sinusoids of period 10 and amplitudes varying from 5.1 to 6.0

is as shown by Figures A-12 and A-13. The performance of the

code degraded as the position of the point of zero slope of

the waveform was moved away from a horizontal grid line. The

: -. V-4
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code rate and area error exhibited large changes for small

changes in amplitude as the amplitude was increased from 5.1

to 5.5 as shown by Figure A-12 The area error decreased as

the amplitude was increased from 5.6 to 6.0 as shown by Figure

A-13b. The code rate flucuated as the amplitude was increased

from 5.6 to 6.0 with the lowest code rate occurring for an

amplitude of 5.7 as shown by Figure A-13a .

The performance of the (1,2) code quantizing the sinusoids

of period 20 and amplitudes varying from 5 to 60 is as shown

by Figure A-14. The area error and code rate flucuated for

these sinusoids. The lowest area error occurred for an

amplitude of ten and then for further increases in amplitude

the area error increased as shown by Figure A-14b. The lowest

code rate occurred for an amplitude of 20 and then exhibited

large increases as the amplitude was increased as depicted by

Figure A-14a

The (1,2) code when used to quantize sinusoids of periods

10 and 20 with amplitudes of 500 and 1000 generated some

surprising data. The code rate was approximately 3.7 and the

area error was approximately .25 as depicted by Table A-2.

Using the assumption that for such high amplitude to period

ratios that the waveform looks like a straight line in any two

adjacent grid squares an approximation can be made as to the

frequency that the ring 2 nodes are selected for quantization.

Knowing that it takes five bits to encode a node for the (1,2)

i 7 icode whether the node is lying on ring one or ring two, the
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maximum code rate that could be exprienced for the

quantization of a straight line is 5.0 and the minimum is 2.5.

Using these results it is estimated that the nodes on the

second ring were selected less than 1/3 of the time. This

result also indicates why the area error performance

approaches that of the (1) code since the performance

characteristics of the (1) code dominate the expected

advantages of the (1,2) code.

The (1,2) code as discussed above degrades in performance

as the amplitude to period ratio is increased. The code also

seems to be dependent upon the position of zero slope of the

waveform being quantized with respect to the horizontal grid

lines of the quantizing grid and the area error performance.

(1,3) Code The performance of this code exhibited a

general decline as the amplitude to period ratio increased.

Figures A-15 thru A-18 depict the performance of the (1,3)

code quantizing the sinusoids of period 10 and amplitudes

ranging from 2 to 100. The code rate decreased as the

amplitude was increased from 2 to 10 as shown by Figure A-15a.

The area error performance flucuated with the lowest area

error occurring for an amplitude of 6 and the highest area

error occurring for amplitudes of 4 and 8. The area error

then demonstrated a steady increase as the amplitude was

increased to 100. The code rate did not exhibit any

-... appreciable change when the amplitude was increased from 10 to

12 and then exhibited a definite increase as the amplitude was

.... increased to 16, as depicted by Figure A-16a . The code rate

V-6
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remainded constant for amplitudes of 16, 18, and 20 as shown

by Figure A-16a and then exhibited a steady increase as the

amplitude was increased.

The performance of the (1,3) code quantizing sinusoids of

period 20 and amplitudes ranging from 5.1 to 6.0 is as shown

by Figures A-19 thru A-20. The area error of the code

increased as the amplitude was increased from 5.1 to 5.5 and

then decreased as the amplitude was increased to 6.0, as shown

by Figures A-19b and A-20b . The code rate did not change

appreciably in either direction as it flucuated with the

lowest rate occurring for an amplitude of 5.8 and the highest

rate occurring for an amplitude of 5.1, as shown by Figures A-

19a and A-20a

The performance of the (1,3) code quantizing the sinusoids

of period 20 and amplitudes varying from 5 to 60 is depicted

by Figure A-21 The area error decreased slightly when the

amplitude was increased from 5 to 10 and then showed a steady

increase as the amplitude was increased to 60 as shown by

Figure A-21b. The code rate exhibited a decrease as the

amplitude was increased from 5 to 20 and then the code rate

began to increase as the amplitude increased as is shown by

Figure A-21a

The performance of the (1,3) code was not as expected when9..

quantizing the sinusoids of periods 10 and 20 and amplitudes

of 500 and 1000. The code rate was approximately 3.9 and the

area error approximately .25 as shown by Table A-I. Using the
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straight line approximation as used for the (1,2) code an

estimate of the frequency of selection of the nodes on the

third ring for encoding can be made. The minimum code rate

that could be anticipated for a straight line along the X-axis

is 1.66 and the maximum is 5.0. Using the assumption that the

waveform at such a high amplitude to period ratio looks like a

straight line in any three adjacent grid squares the nodes

lying on the third ring are being selected for encoding about

11% of the time. The low frequency of selection of the nodes

on the third ring does not allow the code to take advantage of

finer angular resulotion obtainable through the use of the

nodes on ring three. Thus since the nodes of ring one are

selected with by far the greatest frequency the area error

performance approaches that of the (1) code.

The (1,3) code exhibited a general decline in performance

as the amplitude to period ratio increasd. The area error

performance of the code seems to be very dependent upon the

position of the point of zero slope of the sinusoid with
-.

respect to the horizontal grid lines of the quantizing grid.

This concept was tested for sinusoids of period 20 and

amplitudes of 10.0 to 11.0 and 20.0 to 21.0 and the similiar

.- - results were obtained as depicted by Table A-3.

-* (1,2,3)Code The performance of the (1,2,3) code quantizing

the sinusoids of period 10 and amplitudes of 2 to 100 is as

- shown by Figures A-22 thru A-25. The code rate exhibited a

4general decrease as the amplitude was increased from 2 to 10

as is shown by Figure A-22a. The area error performance
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flucuated with the lowest area error occurring for an

amplitude of 2 and the highest for an Amplitude of 4 as shown

by Figure A-22b . The code rate and area error both increased

as the amplitude increased from 10 to 100 as shown by Figures

A-23 thru A-25 .

The performance of the (1,2,3) code when quantizing

sinusoids of period 20 and amplitudes ranging from 5.1 to 6.0

is as shown by Figures A-26 and A-27. The code rate increased

significantly as the amplitude was increased from 5.2 to 5.5

as shown by Figure A-26a. The area error increased

significantly as the amplitude was increased from 5.3 to 5.5

as shown by Figure A-26b. The code rate decreased

significantly as the amplitude was increased from 5.5 to 5.7

and then exhibited a slight increase as the amplitude was

increased from 5.7 to 6.0 as shown by Figure A-27a. The area

error decreased significantly as the amplitude was increased

from 5.5 to 5.6 and remained fairly constant as the amplitude

was increased to 6.0 as shown by Figure A-27b

The performance of the (1,2,3) code when quantizing the

sinusoids of period 20 and amplitudes ranging from 5 to 60 is

as shown by Figure A-28. The code rate for amplitudes 5 and

10 was almost the same, a decrease was exhibited when the

amplitude was increased to 20 and then the code rate increased

as the amplitude increased as is shown by Figure A-28a. The

area error decreased slightly as the amplitude was increased

* ,..& from 5 to 10 and then the area error increased as the

.
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amplitude increased as is shown by Figure A-28b

.. o ° ° . . . . . ° ..

The performance of the (1,2,3) code when quantizing

the sinusoids of period 10 and 20 with amplitudes of 500 and

.. .'.

1000 was surprisingly poor. The code rate and area error were

approximately 4.1 and .25 respectively as shown by Table A-1.

Using the approximation that for such a high amplitude to

period ratio the waveform would look like a straight line in

. any three adjacent grid squares an approximation can be made

as to the frequency that the nodes on either ring one, two or

three are selected can be made. The code rate for a straight

line lying on the X-axis when quantized by the (1,2,3) code

would be a maximum of 6 and a minimum of 2. Using these

approximations the frequency of selection of ring three nodes

is 11%, ring two nodes are selceted 33% of the time, and ring

.-one nodes 56% of the time. Again it is noted that since the

"-" ring one nodes are selected with the highest frequency the

area error performance of the code is dominated by the

performance of the (1) code.

The (1,2,3) code exhibited a general decline in

performance as the amplitude to period ratio increased. The

code also exhibited a very strong dependence between the

position of the point of zero slope of the wavefrom and the

horizontal grid lines of the quantizing grid and the area

*error performance of the code.
Comparision of Code Performance

The performance of the various codes will now be compared

with respect to their ability to quantize identical sinusoids.
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Two sets of data were generated in addition to the data

generated and discussed above for the comparision of the

codes. Set five consists of a set of sinusoids of period 20

and amplitudes varying from 5 to 160. Set six is a set of

sinusoids of amplitude 5 and periods varying from 5 to 50.

Figures A-29 thru A-35 depict the performances of the

codes when quantizing sinusoids of period 20 and amplitudes

varying from 5 to 160. The area error performances of the

(1,3) and (1,2,3) codes were almost equal and in all cases

they were the lowest. The (1) code was consistently the worst

performer with respect to area error performance. The (1,2)

code performed consistently better than the (1) code but worse

than the (1,3) and (1,2,3) codes. The code rate performances

of the codes flucuated. The (1) code had the best code rate

for the sinusoid of amplitude of 5 and period 20 as shown by

Figure A-29a. The (1,2) and (1,2,3) codes had a slightly

higher code rate and the (1,3) code had a much higher code

rate. For an amplitude of 10 and period of 20 the (1,3) code

had the lowest code rate followed by the (1,2,3), (1), and

(1,2) codes as shown by Figure A-30a. The (1,3) code again

*had the lowest code rate for the sinusoid of amplitude 20 and

period 20, followed by the (1,2,3), (1,2), and (1) codes as

shown by Figure A-31a. The (1,3) code had the lowest code

. . rate for the sinusoid of period 20 and amplitude 40 followed

* by the (1,2,3), (1), and (1,2) codes as depicted by Figure A-

32a. When the amplitude was increased to 60 the (1) code had

V-11
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the lowest code rate followed closely by the (1,3) code as is

shown by Figure A-33a. As the amplitude was increased the (1)

code was consistently the best performer followed by the (1,3)

code and then the (1,2) or (1,2,3) codes as is shown by

Figures A-33a, A-34a, and A-35a.

The performance of the codes when quantizing sinusoids of

amplitude 5 and periods ranging from 5 to 50 is as shown by

Figures A-29 and A-36 thru A-40. The code rate and area

error performance of the (1,3) and (1,2,3) codes were

extremely close when quantizing the sinusoid of period 5 and

amplitude 5 as shown by Figure A-36a. The (1) code had the

worst performance for both code rate and area error. The

performances of the (1,3) and (1,2,3) codes again are fairly

close when quantizing the sinusoid of period 10 and amplitude

of 5 with the (1,2,3) code being the best as is depicted by

Figure A-37. The code rate for the (1) code dropped

considerably when the period was increased from 5 to 10 as can

by seen in Figures A-36a and A-37a. The code rate of the

.- ... (1,3), (1,2,3) and (1,2) codes did not exhibit any appreciable

. change for the change in period from 5 to 10. The area error

performance of the (1,3) and (1,2,3) codes is approximately

the same when quantizing the sinusoid of period 20 and

amplitude of 5 as is shown by Figure A-29b. There is a

considerable difference in the code rates of the (1,3) and

(1,2,3) codes as is depicted by Figure A-29a. The (1) code

- "has the best code rate and the worst area error of all the
9 codes as is shown by Figure A-29. When the period of the
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sinusoid was increased to 30 the area error of the (1,3) and

(1,2,3) codes was again approximately equal with the (1,2,3)

code being the best as is shown by Figure A-38b. The code

rate of the (1,3) and (1,2,3) codes were also approximately

equal with the (1,3) code having the lowest code rate as is

shown by Figure A-38a. The (1) code had the highest code rate

and area error of the codes when the period of the sinusoid

was increased from 30 to 50 as is shown by Figures A-38 thru

A-40. The (1,3) code performed by far the best when

* °quantizing the sinusoid of period 40 and amplitude of 5 as is

shown by Figure A-39 . The performances of the (1,2) and

(1,2,3) codes were very close together and in the center of

the difference between the (1,3) and (1) codes performances as

is shown by Figure A-39 . When the period was increased to 50

the (1,2,3) code had the lowest area error followed closely by

* - the (1,3) code as is depicted by Figure A-40b. The (1,3) code

had the lowest code followed by the (1,2,3) code as is shown

by Figure A-40a.

Figures A-41 and A-42 depict the performances of the codes

as the amplitude to period ratio is varied. In Figure A-41

the period is 10 and the amplitude ranges from 2 to 100. In

Figure A-42 the amplitude is 5 and the period ranges from 20

to 100. The area error performances of the (1,2,3) and (1,3)

codes are approximately equal as the amplitude to period

ratio approaches 10 as is shown by Figure A-41b. The area

* . error for all of the codes seems to be upper bounded by .25 as
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was discussed earlier when analyzing the codes separately.

The code rate performances of the codes as depicted by Figure

A-41a was surprising. It was anticipated that as the

amplitude to period ratio increased that the code rates of the

multiple ringed codes would decrease instead of increase as

they did. The reason for this performance is explained by

Figure V-i below.

Figure V-i Quantization of a Vertical Straight Line

As is shown by Figure V-i above the sinusoids of increasing

amplitude were not able to be efficiently quantized by the

multiple ring codes since the link gate sets are almost never

satisfied for the higher order rings. The code rate of the

higher order codes exhibited a decrease as the amplitude to

period ratio increased from .2 to 1.0 and then the code rate

began to rise rapidly as is shown by Figure A-41a . The code

rate of the (1) code exhibited an increase to its maximum as

* the ratio of amplitude to period increased from .2 to 2.0. As

Figures A-41 and A-42 depict the performances of the higher

order codes is very unpredictable for amplitude to period

, , ratios under 1.0. The codes exhibit large flucuations in
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performance for small changes in the amplitude to period

ratio. The (1) code exhibts a decrease in code rate as the

amplitude to period ratio is increased from .05 to .20 and

then begins to increase as the amplitude to period ratio

increases as is shown by Figures A-41a and A-42a. The area

error of the (1) code decreases as the amplitude to period

ratio increases from .05 to .25 and then increases as the

amplitude to period ratio increases as is shown by Figures A-

41b and A-42b

Figure A-43 and A-44 depict the performance of the codes

if the code rate and area error are given equal weighting for

selection of the best code. Figure A-43 depicts the

performance of the codes for amplitude to period ratios of .05

to .25 and Figure A-44 depicts the performance of the codes

for amplitude to period ratios of .2 to 10.0. The performance

of the (1,3) code is superior when the amplitude to period

ratio is less than 4.0 as shown by Figures A-43 and A-44

The (1,3) code is not very stable in this region but is

consistiently the best performer. As the amplitude to period

ratio increases above 4.0 the (1) code becomes the best

performer as is shown by Figure A-44

1/2 Grid Square Capture Region

" The enlarging of the capture region of the codes to 1/2 of

a grid square did not affect the performance of the codes.

This result was used in designing the algorithm for quantizing

the rotated sinusoids.
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Rotated Sinusoid Algorithm

The performance of the rotated sinusoid algorithm was

minimal at best. The use of the La Grange Polynomial to

approximate the line drawing is too inefficient with respect

to computer processing time. The algorithm is also very

dependent upon the number of points chosen to generate the

coefficients of the La Grange Polynomial due to the number of

operations required and accuracy of the computer. An

additonal problem is that the particular value of X for which

the polynomial is being evaluated must lie within the set of

points selected to generate the La Grange Polynomial

coefficients. If the value of X is outside of the interval of

the points selected then extrapolation will be performed and

*the accuracy will be questionable. In an attempt to overcome

this a test was performed to ensure that the value of the

first point selected to generate the La Grange Polynomial

coefficients was less than the value of X for which the

polynomial was to be evaluated. An additional test should be

performed to ensure that the value of X is not greater than

the last point of the interval. When 5 points are used the

- . processing time is much faster and the accuracy seems better

than when 10 points are used. The intersect point finding

subroutines seemed to work very well but in some cases the

same intersect point is chosen twice in succession which

causes problems for the La Grange Polynomial routine. This

problem occurrs since then the points are no longer distinct

and a divide by zero error will occur. A possible solution is
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to reduce the step size from .2 to .1 when calculating the

points to be rotated, however this will add to the already

extremely high processing time.

Summary

In this chapter the performances of the (1), (1,2), (1,3),

and (1,2,3) codes have been analyzed when quantizing sinusoids

of different periods and amplitudes. The performance of the

codes have been analyzed with respect to there dependence upon

the amplitude to period ratio. The effect of changing the

capture region of the quantizing code and the performance of

the algorithm designed to quantize rotated sinusoids has been

analyzed.
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Chapter VI

Conclusions and Recommendations

In this chapter the conclusions drawn from the analysis of

the performance of the chain codes will be discussed and

," recommendations for future studies will be made.

Conclusions

From the analysis of chapter V it can be concluded that

the amplitude to period ratio is not a very good predictor of

how well a code will perform. A better predictor might be the

ratio of the grid size to the amplitude or the period of the

line drawing. The position of the point of zero slope of the

sinusoids with respect to the horizontal grid lines of the

quantizing grid had a very definite impact upon the

performance of the code. The size of the capture region does

not affect the performance of the codes.

Recommendations for Future Study

The following recommendations are made for future study in

this area:

1. Develop a general algorithm capable of approximating

the X and Y intersects of any function, whether it be

single or multivalued.

2. Implement the parallel quantizing scheme.

3. Study the effect of the position of zero slope of a sinusoi

with respect to the horizontal grid lines of the quantizing

grid.

4. Continue the implementation of the algorithm to quantize

rotated sinusoids.
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5. Quantize a function that does not have a constant peak

amplitude, such as the sampling function.

6. Implement the algorithm so that the grid size can be

varied with respect to the period and amplitude.
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Performance Plots

In each figure, the upper plot is that of the accumulated

encoding rate per unit length versus the domain of the

function. The lower plot is that of the accumulated area

error per unit length versus the domain of the function. Each

performance curve in the figures is annotated with either the

amplitude of the sinusoid being quantized, or the code which

was used to do the quantization. Table A-i depicts the

asymptotic values of the area error and code rate of the

codes when quantizing sinusoids of periods 10 and 20 with

amplitudes of 500 and 1000. Tables A-2 and A-3 depict the

asymptotic performance of the (1) and (1,3) codes quantizing

sinusoids of period 20 and amplitudes ranging from 10.0 to

11.0 and 20.0 to 21.0.
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TABLE A-i

Asymptotic Values of AEPL and BPL

Code Period Amplitude AEPL BPL

1 10 500 .2482269 3.000068
1 10 1000 .2488344 3.000153

1 20 500 .2474092 2.999670
1 20 1000 .2486595 2.999976

1,2 10 500 .2470029 3.719299
1,2 10 1000 .2482250 3.734437

1,2 20 500 .2449745 2.688825
1,2 20 1000 .2474269 3.719261

1,3 10 500 .2458516 3.824547
1,3 10 1000 .2476406 3.856128

1,3 20 500 .2427406 3.760743
1,3 20 1000 .2462500 3.824410

1,2,3 10 500 .2458178 4.097472
1,2,3 10 1000 .2476272 4.131775

1,2,3 20 500 .2426481 4.030807
1,2,3 20 1000 .2462297 4.097925
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TABLE A-2

Asymptotic Values of AEPL and BPL (1) Code
Period a 20

Amplitude AEPL BPL

10.0 .1601985 2.726612
10.1 .1612904 2.724716
10.2 .1633347 2.735440
10.3 .1670061 2.741070
10.4 .1719414 2.742734

10.5 .1779645 2.741900

10.6 .1691186 2.739371
10.7 .1682938 2.746597
10.8 .1680220 2.750871
10.9 .1666773 2.752015
11.0 .1647528 2.754504

a;20.0 .1957823 2.880466
20.1 .1946993 2.892659
20.2 .1957706 2.892353
20.3 .1973702 2.891657• 20.4 .1993118 2.890753

20.5 .2016630 2.887158

20.6 .2002526 2.899623
20.7 .1986799 2.899171
20.8 .1975523 2.896405
20.9 .1974598 2.892388
21.0 .1979185 2.888404

4A.5
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TABLE A-3

Asymptotic Values of AEPL and BPL (1,3) Code
Period - 20

.. Amplitude AEPL BPL

10.0 .1103938 2.413937
10.1 .1086148 2.290830
10.2 .1113781 2.299343
10.3 .1159503 2.318190
10.4 .1212405 2.364593

10.5 .1270324 2.406615

10.6 .1125786 2.339938
10.7 .1091248 2.366146
10.8 .1087356 2.364184
10.9 .1074386 2.374788
11.0 .1054103 2.361584

20.0 .1404982 2.202335
20.1 .1380205 2.189669
20.2 .1384002 2.182735
20.3 .1400226 2.190168
20.4 .1419936 2.196358

20.5 .1440610 2.193330

20.6 .1442447 2.197877
20.7 .1425788 2.199779
20.8 .1408369 2.196193
20.9 .1403282 2.200487
21.0 .1406388 2.199150
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